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ABSTRACT

The effect of elastic strain, concurrent creep strain, and a 1-percent magnesium

addition on the recovery behavior of a high-purity aluminum was investigated.

The degree of recovery of the prestrained test material was measured in terms of

tensile flow stress at room temperature after recovery treatments between 80 ° and

2000 C . Recovery behavior under no-load conditions was evaluated for the 99. 995-

percent aluminum and the Al-l%Mg alloy. The effect of concurrent elastic strain

and creep straining during recovery of 99. 995-percent aluminum was also studied.

The activation energy for recovery of the 99. 995-percent aluminum between 800 and

200'C was found to be 23,300 ± 2,000 calories per mole, and the activation energy

for the Al-1%Mg alloy was 27,500 calories per mole.

Whereas concurrent elastic strain was concluded to have no effect on the rate of

recovery of the 99. 995-percent aluminum in terms of flow stress, concurrent creep

s training had a very significant effect. However, the activation energy of the recov-

ery process was not found to be significantly different as a result of concurrent

creep straining.
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Section 1

INTRODUCTION

During cold work a number of properties of metals change, which upon heating to

elevated temperatures recover toward their original values for the unstrained state.

For the purposes of this investigation any process, short of recrystallization, which

contributes to this return of properties will be called a recovery process. Thus the

degree of recovery of a cold-worked metal may be studied by measuring the changes

which take place in any of a number of properties. Some of the properties which have

been used by past investigators include X-ray diffraction phenomena, electrical re-

sistivity, hardness, creep strength, elastic limit, and flow stress. An excellent

review of the recovery of mechanical properties has been published by Perryman. (1)

Despite the apparent preponderance of studies made to date on recovery behavior,

there still remain many important questions which must be answered to allow intel-

ligent selection of alloy additions and thermal-mechanical treatments for elevated

temperature applications. Two of these areas which preliminary observations indi-

cate should have an important influence on the rate of recovery and which need clari-

fication are the effect of solid-solution alloy additions and the effect of concurrent

straining during the recovery process.

A. number of investigators (1) have demonstrated that impurities affect the rate of re-

covery and the substructures formed during recovery. Limited studies have indi-

cated that in some cases solid-solution additions greatly decrease the rate of recov-

cry. However, in at least the case of magnesium additions to aluminum, an increase

Manuscript released by the authors 24 February 1961 for publication as a WADD
Technical Report.



in the rate of recovery has been reported. (2) These observations indicate that a very

important aspect of alloy strengthening at elevated temperatures, in addition to the
increased flow stress necessary to move dislocations through alloys, is the effect
alloy additions have on the recovery behavior. To date, little work has been done to
elucidate the influence that specific interstitial and substitutional additions have on

the recovery processes.

Since metals in structural applications at elevated temperatures are under stress and
often experience creep straining, it is apparent that the effects of concurrent elastic
and plastic straining on the rate of recovery of cold-worked metals is of practical
importance. Although some studies have been made in this area, they have been
primarily in terms of resistivity changes, (3) and structural changes. (4) In terms of

mechanical properties, Sherby et al. (5) observed that the rate of recovery of alu-
minum prestrained at liquid nitrogen temperatures as measured by tensile properties
was greater during creep under an applied load than for an equal treatment under no
load. Rinnovatore and Brown (6 ) found that plastic yielding during recovery of zinc
single crystals inhibited the recovery process as measured by flow stress. In neither

case, however, were the kinetics of the phenomena investigated.

The purpose of the current study was to increase our understanding of the effect of
concurrent straining and the effect of alloying by evaluating (1) the effect of elastic

strains and concurrent creep strains on the recovery of high-purity aluminum and
(2) the effect of a 1-percent magnesium addition of the recovery of high-purity
aluminum. Because of the particular interest in the effect of these factors on the

recovery behavior as related to the mechanical properties, the degree of recovery

was evaluated in terms of tensile properties.

2



Section 2

EXPERIMENTAL PROCEDURE

2.1 TEST MATERIALS

The materials used in this study were a high-purity aluminum and a solid-solution

aluminum-magnesium alloy, both obtained from the Alcoa Research Laboratory,

New Kensington, Pennsylvania. Analyses for these materials are presented in Table I.

Both materials were received in the form of 0. 125-in. thick sheets, as cold-rolled.

Tensile specimens were cut in the rolling direction from the as-received sheets,

using a Tensilkut high-speed pin router and template to produce the specimen geom-

etry shown in Fig. 1. The recrystallization treatment and resulting grain size for

each of the test materials is given in Table l.

Table I

CHEMICAL ANALYSIS OF TEST MATERIAL

Material Alcoa - Lot No. Al Cu Fe Si Mg Others

99.995% Al 197696 99.995 0.001 0.002 0.001 0.0004 0.000

AI-Mg Alloy 197072 99.00 0.001 0.002 0.003 0.99 0.000

Table II

RECRYSTALLIZATION TREATMENT

Material Annealing Treatment in Salt Bath Recrystallized
Grain Size (mm)

99.995% Al 20 min at 450°C 0.4

Al-1%Mg 20min at500°C 0.3

3
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2.2 APPARATUS

The equipment used in this investigation consisted basically of three parts: (1) a

means of performing and recording tensile stress-strain behavior at.room tempera-

ture, (2) controlled temperature baths for recovery treatments of the prestrained

specimens, and (3) equipment for application of various stress levels during recovery,

and for measurement of any creep strains which occurred.

The room-temperature straining of specimens, before and after recovery treatment,

was accomplished with an Instron Testing machine which autographically recorded the
load-deflection curve, using a 1000-lb load cell. All tensile tests, prior to recovery

and after recovery, were conducted at room temperature at a strain rate of about

0. 03 per minute. An assembly of the tensile specimen and extensometer, mounted

in the Instron machine, is shown in Fig. 2. The extensometer consists of two linear-
variable-differential transformers (LVDT's) mounted on the pull-bar with one trans-

former core connected to the upper gage block and the other core to the lower gage
block. The net output of the two transformers was proportional to the extension be-
tween the two gage blocks. This output was amplified within the Instron and recorded

autographically. The resulting least counts in the autographically recorded load-

ucformation curve were equivalent to a strain of 0. 002, and a stress of 60 psi in the

case of the high-purity aluminum and of 150 psi in the caseof the AI-Mg alloy.

Figure 3 shows the constant-temperature baths used for the recovery treatments

under no-load conditions. Four recovery baths were used at nominal temperatures

of 80' , 1200, 1600 , and 2000C. Cottonseed oil was used for the three lower-

temperature baths, and silicone oil for the 200'C bath. The bath temperatures were
held constant by means of a mercury thermoregulator. For the majority of the re-

covery tests the bath temperatures were held constant to within ± VC. However, in

a few cases variations as great as ± 2°C occurred.

For the purpose of investigating th; effect of concurrent elastic strain and plastic

strain upon recovery, two additional recovery baths were mounted on constant-load

5



Fig. 2 Tensile Specimen and Extensometer Assembly in, Test Position
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creep frames, as shown in Fig. 4. These baths were mounted on drill press columns

so they could be raised to immerse the test specimen in the oil. Creep strain achieved

during recovery was determined by exciting the LVDT's with a constant voltage input

and measuring the diode-rectified output on a D-C millivoltmeter. -This system was

extremely sensitive, but fluctuation of the background signals picked up by the shield-

ed circuit caused the effective least count to be equivalent to a strain of about 0. 002,

or about equal to that used on the Instron recorder. Specimens were loaded through

20-to-1 lever arms prior to application of the oil bath, and were unloaded after oil

quenching to near room temperature.

At the outset of this program, a specimen was mounted in an extensometer and a

thermocouple was spot-welded to the center of the gage section. Heating curves

were obtained for each bath temperature so that the time-temperature path for the

specimen to reach bath temperature was determined. After the results of longer

time tests had indicated the magnitude of the activation energy for recovery in the

80' to 200'C temperature range, it was possible to calculate accurately the correction

in recovery time necessary to substract to obtain the total effective time at bath tem-

perature. This time correction ranged from 1. 06 min to 1. 8 min, and was significant

for only the shorter recovery treatments of 1 hr or less. The quenching operation was

found to be rapid enough so that no correction was necessary for this operation.

2.3 METHOD OF EVALUATING RECOVERY

The degree of recovery after prestraining at room temperature was evaluated in terms

of tensile properties by measuring the decrease in initial flow stress after various

recovery treatments. Figure 5 shows schematically the effect of a recovery treat-

ment on the true stress-true strain, 0-E , curve. The degree of recovery was

evaluated in terms of fractional recovery f , where f is defined as the decrease inr r

the flow stress due to the recovery treatment divided by the decrease experienced if

the material recovered completely to the unstrained state. Thus, as illustrated in

Fig. 5,

(U 1  a 2 )

r (a1 - 7y)
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Fig. 4 Experimental Setup for Studying Recovery Behavior Under Conditions of

Concurrent Stress
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In the case of the high-purity aluminum the initial yield stress, ay , upon straining

the recrystallized material was very low, in some cases approaching zero. The

values varied, apparently due to slight differences in handling the very soft materia.

during mounting the extensometer. These slight differences in initial yield strength

appeared to have little if any effect upon the subsequent flow-stress curve. Ph cal-

culating fr for the recovery tests on the high-purity aluminum, U y was thus taken

as zero. In the case of the Al -Mg alloy the initial yield strength was relatively high

and fairly constant at a value of about 3000 psi. In calculating fr for the alloy, the

actual value of a was used.

Several specimens were prestrained, unloaded for a short time at room temperature

and restrained. A slight drop was observed in the initial yield strength about equal

to the width of the "ecorded ink line. This drop, attributed to a small amount of re-

covery at room temperature , was equal to an fr value of about 0. 003'

Laue back-reflection studies which were conducted on the high-purity aluminum after

15-percent prestrain showed that no recrystallization was obtained after 1 hr at 4508C,

indicating that only recovery occurred at the highest temperature of 2000C used in

this investigation. Although no recrystallization occurred after 1 hr at 4500C for a

specimen prestrained 15 percent, the as-received material which was in a severely

cold-worked condition as indicated earlier was completely recrystallized at the same

temperature in 20 minutes.

11



Section 3

EXPERIMENTAL RESULTS

All tensile data, before and after recovery treatment, were obtained at room tem-

perature in the form of autographic recordings of load-deformation curves. The

true stress-true strain curves presented in this section are based upon selected

values taken from the continuous curves which were recorded. The technique of

evaluating the degree of recovery in terms of the decrease in initial flow stress after

the recovery treatment proved very satisfactory and resulted, in most cases, in a

well-defined initial flow stress. In the most poorly defined cases, which were for

the longer recovery times, the uncertainty in the initial flow stress was still less

than 4- 5 percent.

3.1 RECOVERY BEHAVIOR OF HIGH-PURITY ALUMINUM

The effect of recovery treatment at 800C on the true stress-true strain curve of the

99. 995-percent aluminum is presented in Fig. 6. The upper curve represents the

u - E curve for a continuous test without a recovery treatment. The other three

curves represent specimens which were prestrained at room temperature to 10-

percent true strain, unloaded and recovered at 80'C for times of 0.07, 4.0, and

100 hr, and finally poststrained at room temperature. A drop in the entire stress-

strain curve is observed; this drop increases with increasing recovery time at 80°C.

Figure 7 presents similar stress-strain curves for the high-purity aluminum after

various recovery times at 201C.

The recovery data for high-purity aluminum are summarized in Fig. 8 for the four

recovery temperatures in terms of the fractional recovery fr versus the log of the

recovery time. The data result is straight, almost parallel lines with the exception

of the shorter recovery times at the lowest recovery temperature, 80°C.

13
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To calculate the activation energy for the recovery process, information regarding

the existence of equivalent states of the material between two recovery temperatures

must be known or assumed. It has been the practice of past investigators to assume

that equivalent states were obtained during recovery at different temperatures when

the amounts of recovery of the particular property being measured were equal. The

present investigators set out to demonstrate whether this assumption is valid. The

initial intent was to check the equivalency of the recovered states for a pair of speci-

mens which exhibited equal values of f after recovery at different temperatures,r
by comparing the entire stress-strain curve after recovery. Superposition of the

two stress-strain curves would indicate that not only were the values of the initial

flow stress equal but also the rates of strain hardening were identical for both cases,

or that equivalent structural states existed. However, to achieve equal recovered

states, even for the case of two specimens given identical recovery treatments, it is

necessary that the initial strain-hardened states prior to recovery be equal. Because

of experimental scatter of the stress-strain curves during prestraining, it was usually

not possible to obtain equal strain-hardened states.

For this reason, comparison was made of four pairs of tests, each of which had
equal values of f , on the basis of percent of true stress at 0. 10 true strain. These

r

comparisons are presented in Fig. 9. The superposition of the curves in most cases

1,i quite good and appears to substantiate the assumption of equivalent structural states

at equal values of f

3.2 RECOVERY BEHAVIOR OF Ai-1% Mg ALLOY

The effect of recovery treatment at 80"C on the true stress-true strain curve

of the Al-1% Mg alloy is illustrated in Fig. 10. It will be noted that there is very

little additional drop in the stress-strain curve because of extending the recovery

time at 80'C from 100 to 500 hr. Figure 11 presents similar recovery data for the

alloy after various recovery times, at 201'C. Of particular interest here is the

rapid initial rate of recovery. A 5-min recovery treatment resulted in a drop in the

17
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initial flow stress in terms of fractional recovery'of 0.5, whereas an additional

recovery time of almost 500 hr results in only an additional fractional recovery of

0.16.

Figure 12 summarizes the recovery data for the AI-Mg alloy for the four recovery

temperatures in terms of fractional recovery f as a function of the log of the re-r

covery time. To allow a direct comparison between the recovery data for the high-

purity aluminum and the AI-Mg alloy, the curves of Figs. 8 and 12 have been com-

bined in Fig. 13. A numl 2r of observations are of interest:

" At 80'C the alloy initially exhibited less recovery in terms of f than ther

high-purity aluminum, but after about a 30-hr recovery time the alloy

experienced a larger fractional recovery than the aluminum.

" At 118'C the alloy recovered less initially than the high-purity aluminum,

but the slope of the f versus log t curve for the alloy is much greaterr

and after only 0. 2 hr the f value for the alloy was higher than that for the
r

aluminum.

" At 160'C at 0. 1 hr the alloy already recovered more than the high-purity

aluminum at the same temperature.

* The slopes of the linear portion of the f versus log t curves at 80*, 1180,r

and 1600C are about parallel and are greater for the alloy than for the high-

purity aluminum.

" At 201'C the alloy experienced considerably more recovery than the alu-

minum, about twice the fractional recovery at 0. 1 hr; however, the slope

of the initial part of the f versus log t curve for the alloy was less atr
the 201'C recovery temperature than at the lower three temperatures. In

fact, at 201'C the slope of the curve for the alloy is about identical to the

slope of the f versus log t curves for the high-purity aluminum.r

" An additional item of interest is the definite break in the fr versus log t

curves for the alloy for the higher three recovery temperatures, where the

fractional recovery of flow stress appears to stop.

21
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The data for the alloy were examined for tests having almost identical values of fr

in an effort to check whether equivalent structural states were obtained independent

of the recovery temperature. Two tests had an f value of 0. 25, one after 5 minr
at 160°C and one after 98 hr at 800C. Since these two specimens gave very nearly

identical u - E curves prior to recovery, it was possible to compare the tests on the

basis of the actual a - E curves rather than on the basis of the percentage of flow

stress. The superposition of the stress-strain curves for these two tests before and

after recovery is very good, as shown in Fig. 14. Since the initial flow stress after

recovery and the rate of work hardening are identical, both properties being structure-

sensitive, it is concluded that the two specimens which were recovered at different

temperatures to a constant value of f had equivalent structural states.
r

On this basis, activatio- energy values calculated for the recovery process for the

alloy were about 27,500 calories per mole over the temperature range of 800 to

160 0 C, as indicated in Fig. 12.

All the recovery tests presented so far were conducted on specimens prestrained to

a true strain of 0. 10. This results, of course, in different work-hardened states

for the high-purity aluminum and the Al-Mg alloy. Reference to Figs. 7 and 11

indicates that a true stress of about 5,000 psi was required to continue to deform the

high-purity aluminum at 0. 10 strain, whereas about 14,000 psi was required in the

base of the AI-Mg alloy. This poses a question as to whether the degree of prior

work-hardening in either material would change the relative recovery behavior for

the high-purity aluminum and the Al-Mg alloy. In an attempt to clarify this factor,

a series of recovery tests were conducted at 160°C on both test materials to deter-

mine the effect of different amounts of prestrain on the recovery behavior. The

results of these tests are presented In Fig. 15 for the high-purity aluminum and in

Fig. 16 for the AI-Mg alloy. The value of f for the high-purity aluminum after ar
41-hr recovery at 1600C appears to be independent of prestrain between a strain

of 0. 04 and 0. 14 and has a value of about 0. 39. The fact that the values of f are
r

equal does not imply, of course, that the structural states are equal after recovery
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for the different prestrain conditions. In fact, it is quite evident that after recovery

the initial rate of strain hardening increases with increasing amounts of prestrain.

With reference to Fig. 16, a 6-hr recovery treatment at 1600C resulted in a constant

f of about 0.47, independent of the amount of prestrain between 0.04 and 0.14.r
Also for the alloy the initial rate of strain hardening after recovery increases with

increasing amounts of prestrain. Thus, the fractional recovery of initial flow stress

appears to be independent of the amount of prestrain for both the high-purity aluminum

and the Al-Mg alloy, over the range of pe'estrain studied.

3.3 RECOVERY OF HIGH-PURITY ALUMINUM UNDER CONCURRENT ELASTIC
AND PLASTIC STRAIN

3. 3. 1 Recovery Under Concurrent Elastic Strain

Recovery tests were conducted on high-purity aluminum at 800 and 1980C under con-

ditions of constant applied tensile stress which produced no measurable creep strain-

ing during the course of recovery treatment. These results are shown in Fig. 17.

The solid lines indicate no-load recovery curves, and the data points show the results

of recovery tests made under concurrent stresses of 690, 2500, and 3025 psi as indi-

cated in the figure. It will be noted that the application of 2500 psi at 80°C produced

,io change in recovery rates. Furthermore, a concurrent stress of 690 psi produced

no significant effect on recovery at 198°C. A stress of 3025 psi at 800C, however,

resulted in an appreciable acceleration of recovery throughout the range of recovery

times investigated. This stress was found to produce measurable creep strain

beginning at about 50 hr, as will be discussed in the next section. The possibility

exists that some creep was occurring, but it was not measurable with the equipment

employed; it is estimated that a creep strain of 0. 001 or less could remain undetected.
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3. 3. 2 Recovery Under Concurrent Creep Straining

Creep tests conducted on high-purity aluminum prestrained to 0. 10 true strain ex-

hibited an initial stage of zero creep which was dependent upon the stress and tem-

perature. The creep curves representing the highest concurrent strains used in this

study are shown in Fig. 18. In each case, a period of time elapsed prior to the

achievement of an appreciable creep rate. A series of recovery tests were conducted

which were terminated at different points along the curves shown.

The effect of concurrent creep straining on the recovery of high-purity aluminum at

1600 and 198°C under a stress of 2075 psi is shown in Fig. 19. The upper lines

represent the no-load recovery curves. The numbers in parentheses refer to the

creep strain which occurred in each test. These data clearly demonstrate that the

recovery process is accelerated during concurrent creep strain. The fractional

recovery is observed to have increased as much as 40 percent during creep straining

in the strain range 0.03-0.05, and no significant acceleration of recovery at these

temperatures was obtained prior to the onset of creep. These data allow a check on

the equivalence of states in terms of the stress-strain curves after recovery, as two

tests resulted in very similar fractional recovery: one after recovery for 1 hr at

1980C under 2075 psi had an f of 0. 472, and the other after recovery for 14 hr atr
160'C under the same stress had an f of 0. 478. For comparison, the two tests arer
shown in Fig. 20 in terms of percent of true stress at 0. 10 true strain. The good

agreement of the two curves after different recovery treatments adds additional sup-

port to the concept that equivalent structural states exist at equal values of fractional

recovery.

The effects of concurrent creep straining on recovery of high-purity aluminum were

also studied at 3025 psi at 80°C and at 1385 psi at 1980C. These results are sum-

marized in Fig. 21. As before, the numbers in parentheses refer to the creep strain

achieved in each case; absence of a number indicates that no detectable creep occurred.

It will be noted in Fig. 21a that, although accelerated recovery occurred after only 5

min at 80°C under a stress of 3025 psi, the onset of measurable creep, as indicated
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in Fig. 18b, resulted in a sharp increase in the rate of recovery. As previously

mentioned, small amounts of creep may be the cause of the accelerated recovery

which occurred prior to 50 hr.

Figure 21b shows the effect of concurrent creep straining at 1385 psi and 2075 psi

on the recovery of high-purity aluminum at 198°C. Again, it will be noted that appre-

ciable acceleration of the recovery process at 1980C required creep straining. The

form of the accelerated recovery curves does not appear the same, as the 1385-psi

curve indicates a greater increase in fractional recovery at the higher creep strain.

A possible explanation for this behavior will be discussed later.
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Section 4

DISCUSSION

4.1 PREVIOUS INVESTIGATIONS

The results obtained by previous investigators suggest that no-load recovery of cold-

worked, high-purity aluminum proceeds by polygonization and subgrain formation,

followed at sufficiently high temperatures by subgrain growth. The following sum-

mary contains observations which are pertinent to this investigation:

(1) Towner and Berger (7 ) studied the recovery of cold-worked, high-purity

aluminum single crystals and observed that:

* Some substructure was present after deformation without heating.
(8)

This observation was also made earlier by Perryman, on poly-

crystallinie aluminum.

e Heating to 4000, 5000, and 600°C caused only subgrain sharpening

in the first 30 sec. Subgrain size at this point was dependent upon

prestrain, being smaller for larger values of prestrain.

* Following initial sharpening, subgrain growth occurred to some

stable subgrain size which was dependent on temperature and pre-

strain. Higher temperatures caused larger subgrain sizes and greater

prestrains caused smaller final sizes. This observation was also made

by Perryman. (8)

(2) Hirsch, Horne, and Whelan (9) observed subgrains bounded by dislocation

networks in thin films of aluminum by transmission electron microscopy.

They observed that annealing of imnmered films at 350°C caused sharp-

ening of subgrains and removal o( dislocations within the subgrains.

(3) In addition to those observations previously mentioned, Perryman(2 ' 8

observed that the subgrain size achieved during recovery of aluminum is
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decreased by additions of magnesium. Furthermore, an addition of 0. 1-

percent magnesium was found to increase the rate of recovery of aluminum,

but further additions had little effect.

(4) Chaudron ( 1 0) has reported that 99. 9995-percent aluminum is virtually non-

work-hardening at room temperature. This indicates that recovery is

strongly controlled by impurity content, becoming more rapid with increasing

purity.

(5) Ball (1 1 ) has found that room-temperature flow stress for polycrystalline

aluminum containing well-annealed substructure varies inversely as the

square root of subgrain diameter.

It is apparent from the above observations that no-load recovery of cold-worked

aluminum occurs in essentially two stages. The first stage is characterized by

polygonization to form a preliminary subgrain structure which is dependent upon the

previous amount of cold work. The second stage may be considered to consist of

the perfection and growth of the subgrains to some final size which is dependent upon

recovery temperature and impurity content. Furthermore, the work of Ball (1 1 )

indicates that the recovery fraction based upon flow stress as employed in this in-

vestigation will strongly reflect changes in subgrain size.

4,. 2 NO-LOAD RECOVERY OF HIGH-PURITY ALUMINUM

In light of the aforementioned experimental observations, the no-load recovery curves

of Fig. 8 may be described as representing the decrease in strength, in terms of

flow stress, which accompanies the processes of polygonization and subgrain growth.

It will be noted that the no-load recovery curve at 800C apparently exhibits two stages.

The first stage is asymptotic to the zero recovery line and allows about 8-percent

recovery of flow stress in the first hour. At that point, flow-stress recovery accel-

erates and enters a stage where fractional flow-stress recovery is increasing about

linearly with the logarithm of recovery time. The 1180, 1600, and 20.1°C recovery

curves and the linear portion of the 800C recovery curve are all approximately
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parallel during this stage, suggesting that the same process is taking place. It will

be noted that each of the three upper curves must initially be asymptotic to the zero

recovery line, since the degree of recovery must be zero at zero recovery time.

Thus, it is concluded that the first stage of recovery exhibited at 80°C would be ob-

wrved at the higher recovery temperatures if extremely short recovery times were

within the realm of experimental practicability.

If the recovery behavior shown in Fig. 8 results from equivalent processes occurring

at each temperature, a time-temperature correlation should be applicable. Based

upon the equivalence of recovered states at equal values of fractional recovery, an

activation energy for the recovery data shown in Fig. 8 may be calculated using the

Dorn O-parameter: (12)

0 = te - Q /RT

where

t = recovery time

Q = activation energy

R = the gas constant

T = the absolute temperature

Th-e values of Q obtained for the no-load recovery of cold-worked, high-purity

aluminum are shown in Fig. 8. These values show no significant trend with recovery

or temperature; the average of these activation energies is 23,300 calories per mole.

A master plot of fractional recovery versus 0 is shown in Fig. 22. The degree of

correlation obtained strongly suggests that the process or processes occurring are

thermally activated with an activation energy equal to about 23,300 calories per mole,

and that equivalent recovered states are achieved at equal values of 0 . This value

of activation energy is in only fair agreement with the values reported by other inves-

tigators. Astr6m (1 3 ) obtained a value of 28,000 calories per mole for recovery of
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compressively strained aluminum up to about 180°C. Perryman( 14 ) employed hard-

ness measurements on 20-percent cold-worked aluminum and reported an activation

energy of 33,000 calories per mole, apparently at a temperature of about 350°C. At

present, no explanation is offered for these reported differences. Based upon the

present work, the activation energy for recovery of 10-percent cold-worked poly-

crystalline aluminum is concluded to be 23, 300 ± 2, 000 calories per mole in the tem-

perature range 80°-200°C.

The possibility exists that the observed recovery behavior of high-purity aluminum

below about 8-percent recovery is a process with an activation energy different from

that reported above, since no data were available at times of less than about 5 min.

It is suggested that this early stage corresponds to dislocation glide and climb to form

an initial substructure, and that flow-stress recovery greater than 8 percent is a re-

sult of subgrain growth, with perhaps some additional increase in subgrain perfection.

If this suggestion is correct, subgrain perfection and growth is still occurring after

100 hr at 200'C; that is, the final subgrain size has not yet been achieved, since

the flow-stress recovery has not terminated. Subgrain studies are now in progress

to determine the relationship between flow-stress recovery and polygonization and

subgrain growth.

A 3 NO-LOAD RECOVERY OF Al-1% Mg ALLOY

T'e no-load recovery data obtained for cold-worked Al-Mg alloy are summarized in

Fig. 12. The leveling-off of fractional recovery of flow stress suggests that a final

stable structure has been reached at 1180 , 1600, and 2010C. Previous investigators( 7 ' 8 )

have reported that a stable substructure develops during recovery, wherein the stable

size increases with increasing recovery temperature.

Additional evidence that very little structural change occurs after the fractional re-

covery reaches a plateau is shown by the fact that the entire stress-strain curves for

Al-Mg specimens almost superimpose after recovery for 38, 99, and 476 hr, as pre-

sented in Fig. 11. As previously observed for high-purity aluminum, the 80°C recovery
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curve for the Al -Mg alloy becomes asymptotic to the zero recovery line, possibly

indicating an initial stage of recovery. A later stage of recovery at all four temper-

atures exhibits a linear increase in fractional flow-stress recovery with the logarithm

of recovery time. As indicated earlier, however, the 201°C recovery curve is not

parallel to the alloy curves obtained at the lower three temperatures but is parallel

to the fr versus log t curves obtained for the high-purity aluminum. Some change

in recovery behavior apparently occurs between 1600 and 2010 C for Al-1% Mg alloys,

possibly as a result of the interaction effects of magnesium atoms with dislocations

and dislocation boundaries in this temperature range. It has been found that this

effect drops off sharply between 160 ° and 200 C for Al-1% Mg. (15) A further check

on this possibility is provided by calculation of the activation energy for the recovery

process in the Al-1% Mg alloy.

As indicated in the experimental results section, based upon equal values of fractional

recovery, an activation energy value of 27,500 calories per mole was calculated for

the Al -Mg alloy. Thus, the activation energy for recovery of cold-worked aluminum

was observed to increase, owing to the addition of 1-percent magnesium. This value

is in fair agreement with the value of 25, 000 calories per mole reported by Perryman {1 4 )

as measured by change in hardness of a similar material. Perryman, however, con-

cluded that magnesium additions decreased the activation energy for recovery, having

reported a value of 33,000 calories per mole for high-purity aluminum.

No detailed analysis of the value of 27,500 calories per mole obtained in this investi-

gation will be attempted, but it is significant to note that Phillips, Swain, and Eborall (1 6 )

obtained a value of 28,500 calories per mole for the strain aging of AI-3-1/2% Mg

alloy between 500 and 1500C. This supports the suggestion that the same locking

mechanism which accounts for strain-aging in Al-Mg alloys in the 50°-150°C range

also inhibits the motion of dislocations and dislocation boundaries during the recovery

process. Reported values for the activation energy for diffusion of magnesium in
aluminum range from 26,800 to 38,500 calories per mole; (17) however, the tempera-

ture range for these investigations was 365"-577°C, considerably higher than that

used in the current study.
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Subgrain studies are being conducted to determine the relationship between fractional

flow-stress recovery and subgrain size and perfection for Al-1% Mg alloy.

4.4 RECOVERY UNDER CONCURRENT ELASTIC STRAIN

The effect of elastic strain on recovery behavior of metals is not clear from previous

work. Tannenbaum and Kauzmann (18) used creep rate before and after recovery

treatment as a measure of recovery. They showed that recovery of zinc single crystals

under a shear stress equal to 94 percent of the previous flow stress for a period of 100

min at 35 0 C gave the same degree of recovery as occurred under no-load conditions.

Rinnovatore and Brown, (6) using a fractional flow-stress recovery technique similar

to that used in this investigation, found that shear stresses less than the yield point

had no effect on the recovery behavior of zinc single crystals. Stresses greater than

thW yield point caused plastic strain and were reported to decrease the rate of recovery.

Berghout 3 ) used resistivity changes to measure recovery of polycrystalline copper

wires at -rand 180 0 C and reported that an applied stress of 17 kg/mm 2 , causing

elastic strain only, had an accelerating influence on recovery. No mention was made,

however, of whether creep straining occurred after loading. The possibility of creep

straining is especially significant at 180°C, where the work of Tietz and Dorn (1 9 )

showed that 17 kg/mm 2 (24, 200 psi) can cause continued creep in annealed OFHC copper.

As may be seen in Fig. 17, the recovery rate of 99. 995-percent aluminum at 80'C is

not affected by the application of a tensile stress of 2500 psi. However, the application

of 3025 psi at 80°C is seen to produce an almost immediate increase in recovery which

becomes greater with time. Two explanations for this increase are possible:

" Although no plastic straining was detected up to recovery times of 50 hr,

the possibility remains that a small instantaneous strain and/or gradual

creep strain of less than 0.00 1 in magnitude occurred.

" An elastic strain effect, as reported by Berghout, (3) could have occurred.
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The authors favor the first possibility for two reasons. First, the flow stress at

15-percent true strain of coarse-grained 99. 997-percent aluminum at 80°C at slow

strain rates was reported to be about 3000 psi. (20) Consequently, it is reasonable to

expect some plastic straining at a stress of 3025 psi during recovery at 80°C from a

10-percent cold-worked state. At 198°C, the flow stress at 15-percent true strain is

about 1150 psi, (20) suggesting that 690 psi would cause no plastic yielding. Second, if

elastic strain alone has a significant effect on the recovery process, it is difficult to

determine why no effect was detected at 2500 psi, whereas an appreciable effect was

observed at 3025 psi. That is, it would not be expected that so sharp a threshold

elastic strain would exist. Consequently, it is concluded that the flow-stress recovery

of cold-worked polycrystalline high-purity aluminum between 800 and 2000C is not

significantly affected by concurrent stresses which cause only elastic strains. It

might be pointed out that the accelerated recovery of resistivity due to elastic strain

shown by Berghout may be due to accelerated motion of vacancies to points of annihi-

lation under stress gradients produced in the vicinity of grain boundaries and around

dislocation networks. The effect of such a decreased concentration of vacancies would

not have appreciable effects on the flow-stress measurements employed in this inves-

tigation unless it significantly influenced the polyganizatlon and subgrain growth proc-

esses.

-. 5 RECOVERY OF COLD-WORKED HIGH-PURITY ALUMINUM DURING CONCURRENT
CREEP STRAINING

Previous investigations have given some indirect insight into the possible effects of

cc:Lcurrent plastic straining on the recovery of flow stress. Wood and Suiter(4) have

shown that a concurrent constant strain rate resulted in the growth of a subgrain struc-

ture in polycrystalline 99. 98-percent aluminum to an equilibrium value which was re-

lated to the strain rate and temperature employed. Slower strain rates and higher

recovery temperatures produced increased subgrain sizes. Also of interest is the

study by Servi and Grant (21) which describes the effect of creep straining under a

constant stress upon the resulting substructure. These investigators showed that

the subgrain diameter achieved during high-temperature creep of polycrystalline
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high-purity aluminum was inversely proportional to the creep stress. The effect of

higher constant strain rates may be considered to be equivalent to the effect of higher

creep stresses in the development of equilibrium subgrain structures.

The results of Figs. 19 and 21 clearly show that for 10-percent prestrain and 80°-200°C

recovery temperatures, creep straining accelerates the recovery process. Reference

to these figures and subsection 4. 4 also indicates that no appreciable influence was

observed prior to the onset of creep straining.

The nature of the creep curves of Fig. 18 indicates that at zero recovery time the

prestrained aluminum is capable of withstanding the applied stress. However, as

recovery proceeds at these elevated temperatures, a recovered state is achieved for

which the applied stress causes initial creep. Since equal fractional recovered states

are achieved at equal values of o , as indicated in the master f versus 0 plot ofr
Fig. 22, and applied stress has no effect on these recovered states prior to creep

straining, it is to be expected that, for any given applied stress, creep would begin

at some given fractional recovered state or given value of 0 . After straining begins,

however, a different activation energy may govern the recovery process. Based

upon the equivalence of recovered states at equal values of f demonstrated in Fig. 20

for concurrent creep straining, an activation energy was calculated for the concurrent

-train recovery data of Fig. 19. The average value obtained was 25, 000 calories per

mole. This is somewhat higher than the value obtained for no-load recovery, but the

difference may not be significant. A plot of fractional flow-stress recovery versus

0 is now possible for both no-load and concurrent creep-strain recovery data, using

ony one value of Q. Figure 23a shows such a plot for Q = 23,300 'calories per mole,

the value obtained for no4oad recovery. Good correlation is obtained, but there is a

detectable separation between the 1600 and 200°C concurrent creep recovery curves.

As indicated in Fig. 23b, a plot using an overall Q value of 25,000 calories per mole

is more successful for correlating the recovery data under concurrent creep straining,

but the degree of correlation of the no-load data is slightly decreased.., The activation

energy for flow-stress recovery of polycrystalline 99..995-percent aluminum is thus
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not appreciably affected by concurrent creep straining over the range of fractional

recovery and temperature investigated.

The effect of different creep stresses on acceleration of the flow-stress recovery

may be ascertained from Fig. 21. Let us define the additional fractional recovery

due to creep, Af , as the fractional recovery under creep conditions at a given time

and temperature minus that for no-load recovery at the same time and temperature.

Using this parameter, the effect of creep strain upon acceleration of the fractional

recovery is shown in Fig. 24. Three observations may be made from this plot:

" The initial creep straining (about 0.005) has the greatest effect upon Af ,c

this portion being rather insensitive to stress and temperature variations.

* The curves of Af versus creep strain under the same creep stress ofc
2075 psi but different recovery temperatures of 160 ° and 200°C are essen-

tially identical. This is consistent with the fact that the subgrain size

achieved during high-temperature creep is dependent only on the creep

stress. (21) Furthermore, the correlation of Fig. 23 shows that the course

of creep recovery at 2075 psi follows a given f versus 0 path.r
" Creep straining at 1385 psi produces a greater acceleration of recovery

at 200°C than was obtained using 2075 psi. Since subgrain size has been

observed to increase with decreasing creep stress, this behavior maybe

accounted for on the basis of subgrain growth toward a larger subgrain size

under a creep stress of 1385 psi, leading to a larger final value of fr
and thus Af . No further comments can be made regarding the results

for creep recovery at 80°C and 3025 psi, since a strain of only 0. 006 was

achieved.
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Section 5

CONCLUSIONS

The following conclusions can be drawn:

" The activation energy for no-load recovery of polycrystalline 99. 995-percent

aluminum over a temperature range of 800 to 2000C was found to be 23,300

:L 2,000 calories per mole.

" The addition of 1-percent magnesium to the high-purity aluminum was found

to increase the activation energy for recovery to 27, 500 calories per mole.

" The application of tensile stresses which caused only elastic strains had no

significant effect upon the flow-stress recovery of polycrystalline 99. 995-

percent aluminum over a temperature range of 800 to 200°C.

" Flow-stress recovery of the 99. 995-percent aluminum was accelerated by

concurrent creep straining. At a given temperature, the increased recovery

due to creep straining was greater under lower creep stresses for equal

amounts of creep strain above about 0. 005.

" The activation energy for flow-stress recovery during creep straining of

the 99. 995-percent aluminum between 1600 and 200°C was found to be about

25,000 calories per mole. This value, only slightly greater than that found

for no-load recovery, is not considered a significant difference.

* During a constant recovery treatment, the fractional flow-stress recovery

values were found to be independent of prestrain values between 0.04 and

0. 14 for both the 99. 995-percent aluminum and the Al -1% Mg alloy.
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